Finite Element Approximations of Optimal Controls for the Heat Equation with End-point State Constraints

نویسندگان

  • GENGSHENG WANG
  • LIJUAN WANG
چکیده

This study presents a new finite element approximation for an optimal control problem (P ) governed by the heat equation and with end-point state constraints. The state constraint set S is assumed to have an empty interior in the state space. We begin with building a new penalty functional where the penalty parameter is an algebraic combination of the mesh size and the time step. Based on it, we establish a discrete optimal control problem (Phτ ) without state constraints. With the help of Pontryagin’s maximum principle and by suitably choosing the above-mentioned combination, we successfully derive error estimate between optimal controls of problems (P ) and (Phτ ), in terms of the mesh size and time step.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation

We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...

متن کامل

Dynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle

In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations

We consider an elliptic optimal control problem with control and pointwise state constraints. The cost functional is approximated by a sequence of functionals which are obtained by discretizing the state equation with the help of linear finite elements and enforcing the state constraints in the nodes of the triangulation. Controls are discretized piecewise constant on every simplex of the trian...

متن کامل

Adaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation

An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012